热门标签 | HotTags
当前位置:  开发笔记 > 人工智能 > 正文

数据结构什么是最小生成树?有几种方式构造

数据结构什么是最小生成树?有几种方式构造普里姆算法的基本思想:取图中任意一个顶点v作为生成树的根,之后往生成树上添加新的顶点w。在添加的顶点w和已经在生成树上的顶点v之间必定存在一

数据结构什么是最小生成树?有几种方式构造

普里姆算法的基本思想:取图中任意一个顶点 v 作为生成树的根,之后往生成树上添加新的顶点 w。在添加的顶点 w 和已经在生成树上的顶点v 之间必定存在一条边,并且该边的权值在所有连通顶点 v 和 w 之间的边中取值最小。

之后继续往生成树上添加顶点,直至生成树上含有 n-1 个顶点为止。

克鲁斯卡尔算法克鲁斯卡尔算法的基本思想:为使生成树上边的权值之和达到最小,则应使生成树中每一条边的权值尽可能地小。具体做法: 先构造一个只含 n 个顶点的子图 SG,然后从权值最小的边开始,若它的添加不使SG 中产生回路,则在 SG 上加上这条边,如此重复,直至加上 n-1 条边为止。

数据结构最小生成树

htt

最小生成树是什么?

1.生成树从前述的深度优先和广度优先遍历算法知,对于一个拥有n个顶点的无向连通图,它的边数一般都大于n-1。生成树是指在连通图中,由n个顶点和不构成回路的n-1条边构成的树。

若由深度优先遍历得到的生成树称为深度优先生成树,则由广度优先遍历得到的生成树称为广度优先生成树。

再进一步分析可知,对于满足条件,连通图的n个顶点和不构成回路的n-1条边构成的生成树有多棵,换言之,图的生成树不唯一。2.最小生成树对于带权的图,其生成树的边也带权,在这些带权的生成树中必有一棵边的权值之和最小的生成树,这棵生成树就是最小(代价)生成树。 最小生成树在实际中具有重要用途,如在通信网的设计中,用顶点表示城市,用边表示两个城市之间的通信线路,边的权值表示建造通信线路的费用,这n个城市之间最多可以建n(n-1)/2条线路。如果要求在任意两个城市之间都有线路相连,且建设费用最少,即从n(n-1)/2条边中选取权值最小的n-1条,这就是最小生成树问题。

2.构造最小生成树的基本原则(1)尽可能选取权值最小的边,但不能构成回路。 (2)选择n-1条边构成最小生成树。 常见的最小生成树算法有普里姆(Prim)算法和克鲁斯卡尔(kruskal)算法两种。

最小生成树是什么

最小生成树其实是最小权重生成树的简称。一个有n个结点的连通图的生成树是原图的极小连通子图,且包含原图中的所有n个结点,并且有保持图连通的最少的边。

【应用问题】许多应用问题都是一个求无向连通图的最小生成树问题。

例如:要在n个城市之间铺设光缆,主要目标是要使这 n 个城市的任意两个之间都可以通信,但铺设光缆的费用很高,且各个城市之间铺设光缆的费用不同;另一个目标是要使铺设光缆的总费用最低。这就需要找到带权的最小生成树。 【说明】最小生成树性质:设G=(V,E)是一个连通网络,U是顶点集V的一个非空真子集。若(u,v)是G中一条“一个端点在U中(例如:u∈U),另一个端点不在U中的边(例如:v∈V-U),且(u,v)具有最小权值,则一定存在G的一棵最小生成树包括此边(u,v)。

【举例】网络G表示n个城市之间的通信线路网线路(其中顶点表示城市,边表示两个城市之间的通信线路,边上的权值表示线路的长度或造价)。可通过求该网络的最小生成树达到求解通信线路或总代价最小的最佳方案。

数据结构最小生成树问题

#in


推荐阅读
  • 2023年京东Android面试真题解析与经验分享
    本文由一位拥有6年Android开发经验的工程师撰写,详细解析了京东面试中常见的技术问题。涵盖引用传递、Handler机制、ListView优化、多线程控制及ANR处理等核心知识点。 ... [详细]
  • 自学编程与计算机专业背景者的差异分析
    本文探讨了自学编程者和计算机专业毕业生在技能、知识结构及职业发展上的不同之处,结合实际案例分析两者的优势与劣势。 ... [详细]
  • 探索电路与系统的起源与发展
    本文回顾了电路与系统的发展历程,从电的早期发现到现代电子器件的应用。文章不仅涵盖了基础理论和关键发明,还探讨了这一学科对计算机、人工智能及物联网等领域的深远影响。 ... [详细]
  • 2018年3月31日,CSDN、火星财经联合中关村区块链产业联盟等机构举办的2018区块链技术及应用峰会(BTA)核心分会场圆满举行。多位业内顶尖专家深入探讨了区块链的核心技术原理及其在实际业务中的应用。 ... [详细]
  • 本文作者分享了在阿里巴巴获得实习offer的经历,包括五轮面试的详细内容和经验总结。其中四轮为技术面试,一轮为HR面试,涵盖了大量的Java技术和项目实践经验。 ... [详细]
  • Søren Kierkegaard famously stated that life can only be understood in retrospect but must be lived moving forward. This perspective delves into the intricate relationship between our lived experiences and our reflections on them. ... [详细]
  • 1:有如下一段程序:packagea.b.c;publicclassTest{privatestaticinti0;publicintgetNext(){return ... [详细]
  • C++实现经典排序算法
    本文详细介绍了七种经典的排序算法及其性能分析。每种算法的平均、最坏和最好情况的时间复杂度、辅助空间需求以及稳定性都被列出,帮助读者全面了解这些排序方法的特点。 ... [详细]
  • 本文详细探讨了Java中的24种设计模式及其应用,并介绍了七大面向对象设计原则。通过创建型、结构型和行为型模式的分类,帮助开发者更好地理解和应用这些模式,提升代码质量和可维护性。 ... [详细]
  • 机器学习中的相似度度量与模型优化
    本文探讨了机器学习中常见的相似度度量方法,包括余弦相似度、欧氏距离和马氏距离,并详细介绍了如何通过选择合适的模型复杂度和正则化来提高模型的泛化能力。此外,文章还涵盖了模型评估的各种方法和指标,以及不同分类器的工作原理和应用场景。 ... [详细]
  • 深入解析:阿里实战 SpringCloud 微服务架构与应用
    本文将详细介绍 SpringCloud 在微服务架构中的应用,涵盖入门、实战和案例分析。通过丰富的代码示例和实际项目经验,帮助读者全面掌握 SpringCloud 的核心技术和最佳实践。 ... [详细]
  • 堆是一种常见的数据结构,广泛应用于计算机科学领域。它通常表示为一棵完全二叉树,并可通过数组实现。堆的主要特性是每个节点的值与其父节点的值之间存在特定的关系,这使得堆在优先队列和排序算法中非常有用。 ... [详细]
  • FinOps 与 Serverless 的结合:破解云成本难题
    本文探讨了如何通过 FinOps 实践优化 Serverless 应用的成本管理,提出了首个 Serverless 函数总成本估计模型,并分享了多种有效的成本优化策略。 ... [详细]
  • 尽管深度学习带来了广泛的应用前景,其训练通常需要强大的计算资源。然而,并非所有开发者都能负担得起高性能服务器或专用硬件。本文探讨了如何在有限的硬件条件下(如ARM CPU)高效运行深度神经网络,特别是通过选择合适的工具和框架来加速模型推理。 ... [详细]
  • 本题探讨了在大数据结构背景下,如何通过整体二分和CDQ分治等高级算法优化处理复杂的时间序列问题。题目设定包括节点数量、查询次数和权重限制,并详细分析了解决方案中的关键步骤。 ... [详细]
author-avatar
mobiledu2502855037
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有