现代控制理论习题解答.doc
现代控制理论第1章习题解答1.1 线性定常系统和线性时变系统的区别何在答线性系统的状态空间模型为线性定常系统和线性时变系统的区别在于对于线性定常系统,上述状态空间模型中的系数矩阵和中的各分量均为常数,而对线性时变系统,其系数矩阵和中有时变的元素。线性定常系统在物理上代表结构和参数都不随时间变化的一类系统,而线性时变系统的参数则随时间的变化而变化。1.2 现代控制理论中的状态空间模型与经典控制理论中的传递函数有什么区别答 传递函数模型与状态空间模型的主要区别如下 传递函数模型(经典控制理论)状态空间模型(现代控制理论)仅适用于线性定常系统适用于线性、非线性和时变系统用于系统的外部描述用于系统的内部描述基于频域分析基于时域分析1.3 线性系统的状态空间模型有哪几种标准形式它们分别具有什么特点答 线性系统的状态空间模型标准形式有能控标准型、能观标准型和对角线标准型。对于阶传递函数,分别有 能控标准型 能观标准型 对角线标准型 式中的和可由下式给出,能控标准型的特点状态矩阵的最后一行由传递函数的分母多项式系数确定,其余部分具有特定结构,输出矩阵依赖于分子多项式系数,输入矩阵中的元素除了最后一个元素是1外,其余全为0。能观标准型的特点能控标准型的对偶形式。对角线标准型的特点状态矩阵是对角型矩阵。1.4 对于同一个系统,状态变量的选择是否惟一答对于同一个系统,状态变量的选择不是惟一的,状态变量的不同选择导致不同的状态空间模型。1.5 单输入单输出系统的传递函数在什么情况下,其状态空间实现中的直接转移项不等于零,其参数如何确定答 当传递函数的分母与分子的阶次相同时,其状态空间实现中的直接转移项不等于零。 转移项的确定化简下述分母与分子阶次相同的传递函数 可得由此得到的就是状态空间实现中的直接转移项。1.6 在例1.2.2处理一般传递函数的状态空间实现过程中,采用了如图1.12的串联分解,试问若将图1.12中的两个环节前后调换,则对结果有何影响答 将图1.12中的两个环节调换后的系统方块图为图中。由于相当于对作3次积分,故可用如下的状态变量图表示因为相当于对作2次微分,故可用如下的状态变量图表示 因此,两个环节调换后的系统状态变量图为进一步简化,可得系统状态变量图为取,可以得到两个环节调换后的系统的状态空间模型为两个环节调换前的状态空间模型是显然,调换前后的状态空间实现是互为对偶的。1.7 已知系统的传递函数试求其状态空间实现的能控标准形和能观标准形。 答 系统的能控标准形为 系统的能观标准形为1.8 考虑由下图描述的二阶水槽装置,图1.18 二阶水槽装置图该装置可以看成是由两个环节串联构成的系统,它的方块图是图1.19 二阶水槽系统的方块图试确定其状态空间模型。 答图1.19中两个环节的状态空间模型分别为 和 又因为,所以进一步将其写成向量矩阵的形式,可得1.9 考虑以下单输入单输出系统试求该系统状态空间模型的对角线标准形。 答 由微分方程可得其中,故该系统状态空间模型的对角线标准形为1.10 已知单输入单输出时不变系统的微分方程为试求(1)建立此系统状态空间模型的对角线标准形;(2)根据所建立的对角线标准形求系统的传递函数。 答 (1)由微分方程可得记,其中。从输入通道直接到输出通道上的放大系数,由此可得(2) 由于因此 1.11 已知系统的传递函数为(1) 采用串联分解方式,给出其状态空间模型,并画出对应的状态变量图;(2) 采用并联分解方式,给出其状态空间模型,并画出对应的状态变量图。答(1)将重新写成下述形式每一个环节的状态空间模型分别为 和 又因为, 所以因此,若采用串联分解方式,则系统的状态空间模型为 对应的状态变量图为(2)将重新写成下述形式每一个环节的状态空间模型分别为 又由于因此,若采用并联分解方式,则系统的状态空间模型为对应的状态变量图为1.12 已知系统的状态空间模型为,写出该系统的特征多项式和传递函数矩阵。答 系统的特征多项式为, 传递函数为。1.13 一个传递函数的状态空间实现是否惟一由状态空间模型导出的传递函数是否惟一答 一个传递函数的状态空间实现不惟一;而由状态空间模型导出的传递函数是惟一的。1.14 已知系统的状态空间模型为,写出其对偶状态空间模型。答 其对偶状态空间模型为 1.15 两个对偶状态空间模型之间的特征多项式和传递函数有什么关系答 对于互为对偶的 与 ,它们对应的特征多项式分别为和。由于一个矩阵和其装置的特征多项式是相同的,故互为对偶的两个状态空间模型具有相同的特征多项式。 它们对应的传递函数分别为由于故对偶状态空间模型之间的传递函数关系为,即互为转置。1.16 考虑由以下状态空间模型描述的系统试求其传递函数。答 由于故1.17 给定系统的状态空间模型求系统的传递函数矩阵。 答 系统的传递函数为。由于因此,1.18 试用MATLAB软件求出下列传递函数的状态空间实现 答 执行以下的m-文件num0 10 47 160; den1 14 56 160;A,B,C,Dtf2ssnum,den得到, , , 由此可知1.19 试用MATLAB软件求以下系统的传递函数 答 执行以下m-文件A0 1 0;-1 -1 0;1 0 0; B0;1;0;C1 0 0;D0;num,denss2tfA,B,C,D可得num 0 0 1.0000 0den 1.0000 1.0000 1.0000 0因此,系统的传递函数为1.20 试用MATLAB软件求以下系统的传递函数答 执行以下的m-文件 A2 1 0;0 2 0;0 1 3;B0 1;1 0;0 1;C0 0 1;D0 0;num,denss2tfA,B,C,D,1 num,denss2tfA,B,C,D,2可得要求的两个传递函数是1.21 已知系统的状态空间模型为,取线性变换阵为,且,写出线性变换后的状态空间模型。答 把代入,得 因此,线性变换后的等价状态空间模型为1.22 线性变换是否改变系统的特征多项式和极点简单证明之。答 假设系统的状态空间模型为经过线性变换后,系统的状态模型变为其中由于故线性变换不会改变系统的特征多项式和极点。1.23 已知以下微分方程描述了系统的动态特性(1) 选择状态变量,写出系统的状态方程;(2) 根据(1)的结果,由以下的状态变换确定新的状态变量,试写出关于新状态变量的状态空间模型。答 1 由可得写成矩阵向量形式,可得 2 由于,即容易验证这是一个等价线性变换,故可得1.24 给定系统试确定参数和的值,以使得该系统模型能等价地转换成以下的对角型答 由对角型状态空间模型可知而从原状态空间模型则可得传递函数由于等价的状态空间模型具有相同的传递函数,故经比较系数可得13