热门标签 | HotTags
当前位置:  开发笔记 > 后端 > 正文

开发笔记:使用labelImg制作自己的数据集(VOC2007格式)用于FasterRCNN训练

本文由编程笔记#小编为大家整理,主要介绍了使用labelImg制作自己的数据集(VOC2007格式)用于Faster-RCNN训练相关的知识,希望对你有一定的参考价值。http
本文由编程笔记#小编为大家整理,主要介绍了使用labelImg制作自己的数据集(VOC2007格式)用于Faster-RCNN训练相关的知识,希望对你有一定的参考价值。


https://blog.csdn.net/u011956147/article/details/53239325

https://blog.csdn.net/u011574296/article/details/78953681









版权声明:本文为博主原创文章,欢迎转载,请注明出处 https://blog.csdn.net/u011574296/article/details/78953681


一、数据集文件夹

新建一个文件夹,用来存放整个数据集,或者和voc2007一样的名字:VOC2007 
然后像voc2007一样,在文件夹里面新建如下文件夹:

技术分享图片三、标注图片,标注文件保存到Annotations

使用labelIImg 标注自己的图片

1、在git上下载源码:https://github.com/tzutalin/labelImg

2、按照网页上的使用方法使用 
(1)安装PyQt4和Lxml

(2)在labelImage 的目录下 shift+右键打开cmd 运行一下命令:


pyrcc4 -o resources.py resources.qrc 
python labelImg.py


注:这个时候,就会出现labelimage的窗口

(3)labelimg窗口的使用方法: 
? 修改默认的XML文件保存位置,可以用“Ctrl+R”,改为自定义位置,这里的路径不能包含中文,否则无法保存。

? 源码文件夹中使用notepad++打开data/predefined_classes.txt,可以修改默认类别,比如改成bus、car、building三个类别。

?“Open Dir”打开需要标注的样本图片文件夹,会自动打开第一张图片,开始进行标注

? 使用“Create RectBox”开始画框

? 完成一张图片后点击“Save”,此时XML文件已经保存到本地了。

? 点击“Next Image”转到下一张图片。

? 标注过程中可随时返回进行修改,后保存的文件会覆盖之前的。

? 完成标注后打开XML文件,发现确实和PASCAL VOC所用格式一样。


每个图片和标注得到的xml文件,JPEGImages文件夹里面的一个训练图片,对应Annotations里面的一个同名XML文件,一 一 对应,命名一致

标注自己的图片的时候,类别名称请用小写字母,比如汽车使用car,不要用Car 
pascal.py中读取.xml文件的类别标签的代码: 
cls = self._class_to_ind[obj.find(‘name‘).text.lower().strip()] 
写的只识别小写字母,如果你的标签含有大写字母,可能会出现KeyError的错误。 


四、ImageSetsMain里的四个txt文件

在ImageSets里再新建文件夹,命名为Main,在Main文件夹中生成四个txt文件,即: 
技术分享图片 
test.txt是测试集 
train.txt是训练集 
val.txt是验证集 
trainval.txt是训练和验证集

VOC2007中,trainval大概是整个数据集的50%,test也大概是整个数据集的50%;train大概是trainval的50%,val大概是trainval的50%。

txt文件中的内容为样本图片的名字(不带后缀),格式如下: 
技术分享图片

根据已生成的xml,制作VOC2007数据集中的trainval.txt ; train.txt ; test.txt ; val.txt 
trainval占总数据集的50%,test占总数据集的50%;train占trainval的50%,val占trainval的50%; 
上面所占百分比可根据自己的数据集修改,如果数据集比较少,test和val可少一些

代码如下:

%注意修改下面四个值
xmlfilepath=‘E:Annotations‘;
txtsavepath=‘E:ImageSetsMain‘;
trainval_percent=0.5; #trainval占整个数据集的百分比,剩下部分就是test所占百分比
train_percent=0.5; #train占trainval的百分比,剩下部分就是val所占百分比
xmlfile=dir(xmlfilepath);
numOfxml=length(xmlfile)-2;#减去.和.. 总的数据集大小
trainval=sort(randperm(numOfxml,floor(numOfxml*trainval_percent)));
test=sort(setdiff(1:numOfxml,trainval));
trainvalsize=length(trainval); #trainval的大小
train=sort(trainval(randperm(trainvalsize,floor(trainvalsize*train_percent))));
val=sort(setdiff(trainval,train));
ftrainval=fopen([txtsavepath ‘trainval.txt‘],‘w‘);
ftest=fopen([txtsavepath ‘test.txt‘],‘w‘);
ftrain=fopen([txtsavepath ‘train.txt‘],‘w‘);
fval=fopen([txtsavepath ‘val.txt‘],‘w‘);
for i=1:numOfxml
if ismember(i,trainval)
fprintf(ftrainval,‘%s
‘,xmlfile(i+2).name(1:end-4));
if ismember(i,train)
fprintf(ftrain,‘%s
‘,xmlfile(i+2).name(1:end-4));
else
fprintf(fval,‘%s
‘,xmlfile(i+2).name(1:end-4));
end
else
fprintf(ftest,‘%s
‘,xmlfile(i+2).name(1:end-4));
end
end
fclose(ftrainval);
fclose(ftrain);
fclose(fval);
fclose(ftest);


  • 1

  • 2

  • 3

  • 4

  • 5

  • 6

  • 7

  • 8

  • 9

  • 10

  • 11

  • 12

  • 13

  • 14

  • 15

  • 16

  • 17

  • 18

  • 19

  • 20

  • 21

  • 22

  • 23

  • 24

  • 25

  • 26

  • 27

  • 28

  • 29

  • 30

  • 31

  • 32

  • 33

  • 34

  • 35

  • 36

  • 37





 

 


















推荐阅读
  • 本文详细介绍了 Dockerfile 的编写方法及其在网络配置中的应用,涵盖基础指令、镜像构建与发布流程,并深入探讨了 Docker 的默认网络、容器互联及自定义网络的实现。 ... [详细]
  • 本文详细介绍了如何在Linux系统上安装和配置Smokeping,以实现对网络链路质量的实时监控。通过详细的步骤和必要的依赖包安装,确保用户能够顺利完成部署并优化其网络性能监控。 ... [详细]
  • 优化ListView性能
    本文深入探讨了如何通过多种技术手段优化ListView的性能,包括视图复用、ViewHolder模式、分批加载数据、图片优化及内存管理等。这些方法能够显著提升应用的响应速度和用户体验。 ... [详细]
  • Navicat Premium 15 安装指南及数据库连接配置
    本文详细介绍 Navicat Premium 15 的安装步骤及其对多种数据库(如 MySQL 和 Oracle)的支持,帮助用户顺利完成软件的安装与激活。 ... [详细]
  • 本文将介绍如何编写一些有趣的VBScript脚本,这些脚本可以在朋友之间进行无害的恶作剧。通过简单的代码示例,帮助您了解VBScript的基本语法和功能。 ... [详细]
  • PyCharm下载与安装指南
    本文详细介绍如何从官方渠道下载并安装PyCharm集成开发环境(IDE),涵盖Windows、macOS和Linux系统,同时提供详细的安装步骤及配置建议。 ... [详细]
  • 资源推荐 | TensorFlow官方中文教程助力英语非母语者学习
    来源:机器之心。本文详细介绍了TensorFlow官方提供的中文版教程和指南,帮助开发者更好地理解和应用这一强大的开源机器学习平台。 ... [详细]
  • 本文介绍了如何使用JQuery实现省市二级联动和表单验证。首先,通过change事件监听用户选择的省份,并动态加载对应的城市列表。其次,详细讲解了使用Validation插件进行表单验证的方法,包括内置规则、自定义规则及实时验证功能。 ... [详细]
  • 毕业设计:基于机器学习与深度学习的垃圾邮件(短信)分类算法实现
    本文详细介绍了如何使用机器学习和深度学习技术对垃圾邮件和短信进行分类。内容涵盖从数据集介绍、预处理、特征提取到模型训练与评估的完整流程,并提供了具体的代码示例和实验结果。 ... [详细]
  • 本文详细介绍 Go+ 编程语言中的上下文处理机制,涵盖其基本概念、关键方法及应用场景。Go+ 是一门结合了 Go 的高效工程开发特性和 Python 数据科学功能的编程语言。 ... [详细]
  • 本文详细记录了在基于Debian的Deepin 20操作系统上安装MySQL 5.7的具体步骤,包括软件包的选择、依赖项的处理及远程访问权限的配置。 ... [详细]
  • QBlog开源博客系统:Page_Load生命周期与参数传递优化(第四部分)
    本教程将深入探讨QBlog开源博客系统的Page_Load生命周期,并介绍一种简洁的参数传递重构方法。通过视频演示和详细讲解,帮助开发者更好地理解和应用这些技术。 ... [详细]
  • 技术分享:从动态网站提取站点密钥的解决方案
    本文探讨了如何从动态网站中提取站点密钥,特别是针对验证码(reCAPTCHA)的处理方法。通过结合Selenium和requests库,提供了详细的代码示例和优化建议。 ... [详细]
  • PHP 5.2.5 安装与配置指南
    本文详细介绍了 PHP 5.2.5 的安装和配置步骤,帮助开发者解决常见的环境配置问题,特别是上传图片时遇到的错误。通过本教程,您可以顺利搭建并优化 PHP 运行环境。 ... [详细]
  • 本文介绍了在使用Visual Studio 2015进行项目开发时,遇到类向导弹出“异常来自 HRESULT:0x8CE0000B”错误的解决方案。通过具体步骤和实践经验,帮助开发者快速排查并解决问题。 ... [详细]
author-avatar
透明的眼泪2502913707
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有