作者:苦--但是依然love着你 | 来源:互联网 | 2023-10-13 12:40
计算给定范围内最小元素的数量
原文:https://www . geesforgeks . org/count-给定范围内最小元素的数量/
给定一个由 N 个数字和 Q 个查询组成的数组,每个查询由 L 和 r 组成。我们需要编写一个程序,打印 L-R 范围内最小元素的出现次数。
示例:
Input: a[] = {1, 1, 2, 4, 3, 3}
Q = 2
L = 1 R = 4
L = 3 R = 6
Output: 2
1
Explanation: The smallest element in range 1-4
is 1 which occurs 2 times. The smallest element
in the range 3-6 is 2 which occurs once.
Input : a[] = {1, 2, 3, 3, 1}
Q = 2
L = 1 R = 5
L = 3 R = 4
Output : 2
2
一种正常的方法是从 L-R 迭代,找出范围内最小的元素。在 L-R 范围内再次迭代,并计算最小元素在 L-R 范围内出现的次数。在最坏的情况下,如果 L=1 且 R=N,复杂度将为 O(N)
一个有效的方法是使用分割树来解决上述问题。在段树的每个节点上,存储最小元素和最小元素的计数。在叶节点,数组元素存储在最小值和计数存储 1 中。对于除叶节点之外的所有其他节点,我们按照给定的条件合并右节点和左节点:
1。min(left _ subtree)min(right _ subtree):
node . min = min(right _ subtree),node . count = right _ subtree . count
3。min(left _ subtree)= min(right_subtree):
node . min = min(left _ subtree)或 min(right _ subtree),node . count = left _ subtree . count+right _ subtree . count
下面给出了上述方法的实现:
// CPP program to Count number of occurrence of
// smallest element in range L-R
#include <bits/stdc++.h>
using namespace std;
#define N 100005
// predefines the tree with nodes
// storing min and count
struct node {
int min;
int cnt;
} tree[5 * N];
// function to construct the tree
void buildtree(int low, int high, int pos, int a[])
{
// base condition
if (low == high) {
// leaf node has a single element
tree[pos].min = a[low];
tree[pos].cnt = 1;
return;
}
int mid = (low + high) >> 1;
// left-subtree
buildtree(low, mid, 2 * pos + 1, a);
// right-subtree
buildtree(mid + 1, high, 2 * pos + 2, a);
// left subtree has the minimum element
if (tree[2 * pos + 1].min < tree[2 * pos + 2].min) {
tree[pos].min = tree[2 * pos + 1].min;
tree[pos].cnt = tree[2 * pos + 1].cnt;
}
// right subtree has the minimum element
else if (tree[2 * pos + 1].min > tree[2 * pos + 2].min) {
tree[pos].min = tree[2 * pos + 2].min;
tree[pos].cnt = tree[2 * pos + 2].cnt;
}
// both subtree has the same minimum element
else {
tree[pos].min = tree[2 * pos + 1].min;
tree[pos].cnt = tree[2 * pos + 1].cnt + tree[2 * pos + 2].cnt;
}
}
// function that answers every query
node query(int s, int e, int low, int high, int pos)
{
node dummy;
// out of range
if (e < low or s > high) {
dummy.min = dummy.cnt = INT_MAX;
return dummy;
}
// in range
if (s >= low and e <= high) {
return tree[pos];
}
int mid = (s + e) >> 1;
// left-subtree
node ans1 = query(s, mid, low, high, 2 * pos + 1);
// right-subtree
node ans2 = query(mid + 1, e, low, high, 2 * pos + 2);
node ans;
ans.min = min(ans1.min, ans2.min);
// add count when min is same of both subtree
if (ans1.min == ans2.min)
ans.cnt = ans2.cnt + ans1.cnt;
// store the minimal's count
else if (ans1.min < ans2.min)
ans.cnt = ans1.cnt;
else
ans.cnt = ans2.cnt;
return ans;
}
// function to answer query in range l-r
int answerQuery(int a[], int n, int l, int r)
{
// calls the function which returns a node
// this function returns the count which
// will be the answer
return query(0, n - 1, l - 1, r - 1, 0).cnt;
}
// Driver Code
int main()
{
int a[] = { 1, 1, 2, 4, 3, 3 };
int n = sizeof(a) / sizeof(a[0]);
buildtree(0, n - 1, 0, a);
int l = 1, r = 4;
// answers 1-st query
cout << answerQuery(a, n, l, r) << endl;
l = 2, r = 6;
// answers 2nd query
cout << answerQuery(a, n, l, r) << endl;
return 0;
}
输出:
时间复杂度: O(n) 为树的构造。 O(log n) 为每个查询。