热门标签 | HotTags
当前位置:  开发笔记 > 开发工具 > 正文

大整数分解因子算法——Dixon的随机平方算法

大整数分解因子算法——Dixon的随机平方算法许多分解因子算法的理论依据是这样的事实:假设我们可以找到x≢y(modn)x\not\equiv\pmy\pmod
大整数分解因子算法——Dixon的随机平方算法

许多分解因子算法的理论依据是这样的事实:

假设我们可以找到x≢±y(modn)x\not\equiv \pm y\pmod{n}x±y(modn),但是有x2≡y2(modn)x^{2}\equiv y^{2}\pmod{n}x2y2(modn)。那么有
n∣(x−y)(x+y)n|(x-y)(x+y) n(xy)(x+y)
但是n∤(x+y)n\nmid (x+y)n(x+y)n∤(x−y)n\nmid (x-y)n(xy),所以gcd(x+y,n)gcd(x+y,n)gcd(x+y,n)gcd(x−y,n)gcd(x-y,n)gcd(xy,n)都是nnn的非平凡因子。

Dixon的随机平方算法也是利用这个事实进行设计的。

算法思想

我们先描述出随机平方算法的大致全貌,再分点详细讨论细节问题。

  1. 假设我们事先找到一个集合BBB称为因子基,BBB中包含了bbb个最小的素数(bbb是适当选取的一个数);
  2. 我们通过某种方法得到了若干个整数zzz,使得z2modnz^{2}\mod{n}z2modn的所有因子都在集合BBB中;
  3. 将某些zzz相乘使得因子基中的每个素数出现偶数次,这样就可以得到一个x2≡y2(modn)x^{2}\equiv y^{2}\pmod{n}x2y2(modn)的式子,根据这个式子可以得到nnn的一个分解

通过例子看看具体的流程:

n=15770708441n=15770708441n=15770708441,并且取的b=6b=6b=6,那么B={1,3,5,7,11,13}B=\lbrace 1,3,5,7,11,13\rbraceB={1,3,5,7,11,13},找到三个zzz确定出如下三个方程:
83409341562≡3×7(modn)120449429442≡2×7×13(modn)27737000112≡2×3×13(modn)8340934156^{2} \equiv 3\times 7\pmod{n}\\ 12044942944^{2} \equiv 2\times 7\times 13\pmod{n}\\ 2773700011^{2} \equiv 2\times 3 \times 13\pmod{n} 834093415623×7(modn)1204494294422×7×13(modn)277370001122×3×13(modn)
把上式两边同时相乘得到
(8340934156×12044942944×2773700011)2≡(2×3×7×13)2(modn)(8340934156\times 12044942944 \times 2773700011)^{2} \equiv (2\times 3\times 7\times 13)^{2}\pmod{n} (8340934156×12044942944×2773700011)2(2×3×7×13)2(modn)

95034357852≡5462(modn)9503435785^{2} \equiv 546^{2}\pmod{n} 950343578525462(modn)
利用Euclidean算法,计算
gcd(9503435785−546,n)=115759gcd(9503435785-546,n)=115759 gcd(9503435785546,n)=115759
所以得到nnn的一个因子为115759.


几个关键问题


  1. 如何选择zzz才能使得z2modnz^{2}\bmod{n}z2modn的所有因子都在集合BBB中。

    这里没有完全绝对的方法,只能给出几个技巧。一种技巧是简单地随机选择一些zzz,计算z2modnz^{2}\bmod{n}z2modn,这也是随机平方法名字的由来;二是使用行如j+⌈kn⌉,j=0,1,2,⋯,k=1,2,⋯j+\lceil \sqrt{kn} \rceil,j=0,1,2,\cdots,k=1,2,\cdotsj+kn

    ,j=0,1,2,,k=1,2,,这些整数的平方模nnn之后,通常很小,因子容易落在BBB中;另外可以使用行如⌊kn⌋\lfloor \sqrt{kn} \rfloorkn

    的整数,这些数在模nnn之后,比nnn小一点,这意味着−z2-z^{2}z2是很小的,只要我们把-1加入BBB中,就可以容易地在BBB上分解z2z^{2}z2

  2. 选择哪些zzz才能使得那些zzz相乘后,因子基中的每个素数出现偶数次。

    假定B={p1,⋯,pb}B=\lbrace p_{1},\cdots,p_{b}\rbraceB={p1,,pb}为因子基。设ccc为稍大于bbb的整数(比如c=b+1c=b+1c=b+1,c=b+2c=b+2c=b+2),且假定我们已经得到ccc个同余方程:
    zj2≡p1α1j×p2α2j×⋯×pbαbj(modn)z_{j}^{2}\equiv p_{1}^{\alpha_{1j}} \times p_{2}^{\alpha_{2j}} \times \cdots \times p_{b}^{\alpha_{bj}}\pmod{n} zj2p1α1j×p2α2j××pbαbj(modn)
    其中1≤j≤c1\le j \le c1jc。对于每个jjj,考虑向量
    αj=(α1jmod2,⋯,αbjmod2)∈(Z2)b\alpha _{j} =(\alpha_{1j}\bmod{2},\cdots,\alpha_{bj}\bmod{2})\in (\mathbb{Z}_{2})^{b} αj=(α1jmod2,,αbjmod2)(Z2)b
    如果我们可以找到{aj}\lbrace a_{j}\rbrace{aj}的子集使得其模2的和为向量{0,0,⋯,0}\lbrace 0,0,\cdots,0\rbrace{0,0,,0},那么对应的zjz_{j}zj的乘积将会使用BBB中每个因子偶数次。


例子

在这里插入图片描述
在这里插入图片描述
3. BBB该怎么选。

BBB的选取比较复杂,如果b=∣B∣b=|B|b=B取得越大,整数z2z^{2}z2似乎更容易在BBB上分解。但是bbb越大,为了找到一个等式需要累积很多同余式。具体方法我们就不赘述,有兴趣的可以参考书籍——Stinson D , 斯廷森, 冯登国. 密码学原理与实践[M]. 电子工业出版社, 2009.


推荐阅读
  • Hibernate全自动全映射ORM框架,旨在消除sql,是一个持久层的ORM框架1)、基础概念DAO(DataAccessorOb ... [详细]
  • 本文详细介绍如何在 Apache 中设置虚拟主机,包括基本配置和高级设置,帮助用户更好地理解和使用虚拟主机功能。 ... [详细]
  • ASP.NET 进度条实现详解
    本文介绍了如何在ASP.NET中使用HTML和JavaScript创建一个动态更新的进度条,并通过Default.aspx页面进行展示。 ... [详细]
  • 本文探讨了Python类型注解使用率低下的原因,主要归结于历史背景和投资回报率(ROI)的考量。文章不仅分析了类型注解的实际效用,还回顾了Python类型注解的发展历程。 ... [详细]
  • 本文详细介绍了如何在最新版本的Xcode中重命名iOS项目,包括项目名称、应用名称及相关的文件夹和配置文件。通过本文,开发者可以轻松完成项目的重命名工作。 ... [详细]
  • 变量间相关性分析
    本文探讨了如何通过统计方法评估两个变量之间的关系强度,重点介绍了皮尔森相关系数的计算及其应用。除了数学公式外,文章还提供了Python编程实例,展示如何利用实际数据集(如泰坦尼克号乘客数据)进行相关性检验。 ... [详细]
  • 本文详细探讨了 TensorFlow 中 `tf.identity` 函数的作用及其应用场景,通过对比直接赋值与使用 `tf.identity` 的差异,帮助读者更好地理解和运用这一函数。 ... [详细]
  • 本文探讨了如何利用RxJS库在AngularJS应用中实现对用户单击和拖动操作的精确区分,特别是在调整区域大小的场景下。 ... [详细]
  • 在测试软件或进行系统维护时,有时会遇到电脑蓝屏的情况,即便使用了沙盒环境也无法完全避免。本文将详细介绍常见的蓝屏错误代码及其解决方案,帮助用户快速定位并解决问题。 ... [详细]
  • Android 中的布局方式之线性布局
    nsitionalENhttp:www.w3.orgTRxhtml1DTDxhtml1-transitional.dtd ... [详细]
  • 搭建个人博客:WordPress安装详解
    计划建立个人博客来分享生活与工作的见解和经验,选择WordPress是因为它专为博客设计,功能强大且易于使用。 ... [详细]
  • 本文深入探讨了WPF框架下的数据验证机制,包括内置验证规则的使用、自定义验证规则的实现方法、错误信息的有效展示策略以及验证时机的选择,旨在帮助开发者构建更加健壮和用户友好的应用程序。 ... [详细]
  • 本文详细介绍了如何在Mac操作系统中为IntelliJ IDEA配置更高的内存限制,以提高开发效率和性能。 ... [详细]
  • td{border:1pxsolid#808080;}参考:和FMX相关的类(表)TFmxObjectIFreeNotification ... [详细]
  • 本文介绍了如何利用jQuery实现对网页上多个div元素的显示与隐藏控制,包括基本的toggle方法及更复杂的显示隐藏逻辑。 ... [详细]
author-avatar
蛮妞妞小公主切_292
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有