热门标签 | HotTags
当前位置:  开发笔记 > 后端 > 正文

城市大数据平台面临的挑战及建议

日前,中国信息通信研究院正式发表了《城市大数据平台白皮书》,阐述了城市大数据的概念和内涵,分析了建设城市大数据平台对解决智能城市建设难点的意义,并介绍了我国城市大数据平台的发展

  日前,中国信息通信研究院正式发表了《城市大数据平台白皮书》,阐述了城市大数据的概念和内涵,分析了建设城市大数据平台对解决智能城市建设难点的意义,并介绍了我国城市大数据平台的发展现状。

 

  同时,白皮书还提出了城市大数据平台的通用技术架构,梳理了城市大数据平台的运营模式,并就城市大数据平台发展给出了相应的建议。

 

  一、什么是城市大数据?

 

  随着数据处理技术的不断进步,人们对于数据应用的意识不断提高,人们生活和各行业运行产生的数据呈现爆发式增长,形成了城市大数据。

 

  城市大数据是指城市运转过程中产生或获得的数据,及其与信息采集、处理、利用、交流能力有关的活动要素构成的有机系统,是国民经济和社会发展的重要战略资源。用简单、易于理解的公式可以表达为:城市大数据=城市数据+大数据技术+城市职能。

 

  城市大数据的数据资源来源丰富多样,广泛存在于经济、社会各个领域和部门,是政务、行业、企业等各类数据的总和。同时,城市大数据的异构特征显著,数据类型丰富、数量大、速度增长快、处理速度和实时性要求高,且具有跨部门、跨行业流动的特征。

 

  按照数据源和数据权属不同,城市大数据可以分为政务大数据、产业大数据和社会公益大数据。政务大数据指的是政务部门在履行职责过程中制作或获取的,以一定形式记录、保存的文件、资料、图表和数据等各类信息资源。产业大数据指的是在经济发展中产生的相关数据,包括工业数据、服务业数据等。

 

  此外,还有一些社会公益大数据。当前,城市大数据多数为政务大数据和产业大数据,所以城市大数据的主要推动者应为一个城市的政府和相关的具有一定数据规模的企业。

 

  为保障城市运转的安全高效,智慧城市建设需要对海量的数据资源进行收集、整合、存储与分析,并使用智能感知、分布式存储、数据挖掘、实时动态可视化等大数据技术实现资源的合理配置。因此,城市大数据是实现城市智慧化的关键支撑,是推动“政通、惠民、兴业”的重要引擎。

 

  二、新型智慧城市发展面临挑战

 

  数据驱动的新型智慧城市发展面临诸多问题。白皮书认为,虽然当前各级地方政府和企业都在积极探索智慧城市建设,但仍存在着特色不明、体验不佳、共享不足等问题。究其根源在于,未能实现城市大数据资源与城市业务的良好融合。

 

  具体而言,挑战包括三个方面:一是信息系统烟囱林立,阻碍数据共享;二是数据治理普遍薄弱,价值大打折扣;三是数据管理水平不一,缺乏整体联动。

 

  如何应对新型智慧城市建设中的困难和挑战?白皮书认为城市大数据平台的建设能够发挥积极作用,具体表现在三个方面。

 

  1.通过数据汇集加速信息资源整合应用

 

  第一,城市大数据平台建立了数据治理的统一标准,提高数据管理效率。通过统一标准,避免数据混乱冲突、一数多源等问题。通过集中处理,延长数据的“有效期”,快速挖掘出多角度的数据属性以供分析应用。

 

  通过质量管理,及时发现并解决数据质量参差不齐、数据冗余、数据缺值等问题。第二,城市大数据平台规范了数据在各业务系统间的共享流通,促进数据价值充分释放。通过统筹管理,消除信息资源在各部门内的“私有化”和各部门之间的相互制约,增强数据共享的意识,提高数据开放的动力。通过有效整合,提高数据资源的利用水平。

 

  2.通过精准分析提升政府公共服务水平

 

  在交通领域,通过卫星分析和开放云平台等实时流量监测,感知交通路况,帮助市民优化出行方案;在平安城市领域,通过行为轨迹、社会关系、社会舆情等集中监控和分析,为公安部门指挥决策、情报研判提供有力支持。

 

  在政务服务领域,依托统一的互联网电子政务数据服务平台,实现“数据多走路,群众少跑腿”;在医疗健康领域,通过健康档案、电子病历等数据互通,既能提升医疗服务质量,也能及时监测疫情,降低市民医疗风险。

 

  3.通过数据开放助推城市数字经济发展

 

  开放共享的大数据平台,将推动政企数据双向对接,激发社会力量参与城市建设。一方面,企业可获取更多的城市数据,挖掘商业价值,提升自身业务水平。

 

  另一方面,企业、组织的数据贡献到统一的大数据平台,可以“反哺”政府数据,支撑城市的精细化管理,进一步促进现代化的城市治理。

 

  三、六方面推进平台建设

 

  白皮书认为,当前我国城市大数据平台的建设仍处于起步阶段,且各地在管理机制、业务架构和技术能力等方面各有优劣,不利于城市大数据平台的长远发展。对于建设城市大数据平台的具体路径,白皮书提出了六点建议。

 

  1.强化平台顶层设计

 

  科学合理的顶层设计是城市大数据平台建设的关键,需从落实国家宏观政策出发,结合地方实际需求,统筹考虑平台目标、数据主权、关键技术、法制环境、实现功能等各个方面,以“高起点、高定位、稳落地”开展平台的顶层设计,保障城市大数据平台建设有目标、有方向、有路径、有节奏地持续推进,并且根据项目进展状况,不断迭代更新、推陈出新。

 

  2.完善平台配套保障机制

 

  城市大数据平台建设与运营须有相应的配套保障机制,并充分发挥保障机制的导向作用和支撑作用,以确保平台规划建设协调一致和平台整体效能的实现。

 

  如建立城市大数据资源管理机制,明确数据内容的归口管理部门、数据采集单位和共享开放方式等;建立城市大数据平台运行管理机制,明确平台使用中数据、流程、安全等各项内容和管理标准,保障平台持续稳定运行。

 

  3.加强数据管理

 

  加强城市大数据管理,实现数据从采集环节到数据资产化的全过程规范化管理。明确数据权属及利益分配,以及个人信息保护、数据全生命周期的管理责任问题。明确数据资源分类分级管理,健全数据资源管理标准。

 

  分类指的是通过多维数据特征准确描述政府基础数据类型;分级是指确定各类数据的敏感程度,为不同类型数据的开放和共享制订相应策略,完善数据采集、管理、交换、架构、评估认证等标准,推动数据共享与开放的基本规范和标准出 台。

 

  以资源目录汇编、资源整合汇聚、交换共享平台为三大标准步骤,坚持“一数一源”、多元校核,统筹建设政务信息资源目录体系和共享交换体系。建立一套科学合理的数据分类体系,将不同领域、多种格式的数据整合在一起,通过多元的检索途径、分析工具与应用程序,方便用户查找和利用数据内容。

 

  四、因地制宜开展平台建设与运营

 

  城市大数据平台的建设与应用要结合,避免出现重平台建设轻平台使用的现象。政府、产业和城市的数据资源极其庞杂,需要明确平台数据资源的权属性,保障数据所有权的归属。

 

  政府拥有政府数据资源所有权,互联网企业往往掌握着先进的数据技术和拥有互联网思维的专业队伍,本地企业对当地的人才资源、市场环境、产业发展等因素有更清晰、更准确的认识,需要充分盘活政府、互联网企业、本地企业等各方资源,参与平台的建设与运营。

 

  城市大数据平台的数据治理和运营体系相当复杂,平台建设的模式和路径没有固定模式,需要发挥各方的主观能动性,因地制宜,挖掘地方优势,突出地方特色,为城市大数据决策提供有力的支撑。

 

  五、开展城市大数据综合评价

 

  各省市大数据主管部门应制定平台长效运行机制和考评办法,建立完善的上报、检查、考评机制,设计量化考核内容和标准,加强平台数据质量管控,管好用好城市大数据平台。

 

  加强对城市大数据平台项目的后评价和项目稽查,强化对数据资源建设以及数据共享开放、数据质量和安全的审计监督。科学构建城市大数据平台综合评价指标体系,开展城市大数据平台建设成效综合评价工作,引导各地城市大数据平台建设工作,不断提升城市大数据平台建设应用成效。

 

  六、加强平台数据安全保障

 

  城市大数据平台包含大量政务和产业数据,涉及国家利益、公共安全、商业秘密、个人隐私,具有高度敏感性,因此必须加强平台数据安全保障能力建设。

 

  落实等级保护、安全测评、电子认证、应急管理等基础制度,建立数据采集、传输、存储、使用、开放等各环节的安全评估机制,明确数据安全的保护范围、主体、责任和措施。研究制定数据权利准则、数据利益分配机制、数据流通交易规则,明确数据责任主体,加大对技术专利、数字版权、数字内容产品、个人隐私等的保护力度。

 

   城市大数据平台面临的挑战及建议. 中琛魔方大数据 ( www.zcmorefun.com )表示:加强大数据安全技术的研究、开发、推广和应用,提高网络安全风险防范和跨境数据流监管水平,研究制定数据应用违规惩戒机制,引入第三方专业机构对数据应用合规情况进行监督审计,加强流通环节的风险评估,加大对数据滥用、侵犯个人隐私行为的管理和惩处,建立和完善信息披露制度。

 


推荐阅读
  • Hadoop入门与核心组件详解
    本文详细介绍了Hadoop的基础知识及其核心组件,包括HDFS、MapReduce和YARN。通过本文,读者可以全面了解Hadoop的生态系统及应用场景。 ... [详细]
  • 数据管理权威指南:《DAMA-DMBOK2 数据管理知识体系》
    本书提供了全面的数据管理职能、术语和最佳实践方法的标准行业解释,构建了数据管理的总体框架,为数据管理的发展奠定了坚实的理论基础。适合各类数据管理专业人士和相关领域的从业人员。 ... [详细]
  • 深入解析 Apache Shiro 安全框架架构
    本文详细介绍了 Apache Shiro,一个强大且灵活的开源安全框架。Shiro 专注于简化身份验证、授权、会话管理和加密等复杂的安全操作,使开发者能够更轻松地保护应用程序。其核心目标是提供易于使用和理解的API,同时确保高度的安全性和灵活性。 ... [详细]
  • 福克斯新闻数据库配置失误导致1300万条敏感记录泄露
    由于数据库配置错误,福克斯新闻暴露了一个58GB的未受保护数据库,其中包含约1300万条网络内容管理记录。任何互联网用户都可以访问这些数据,引发了严重的安全风险。 ... [详细]
  • 创邻科技成功举办Graph+X生态合作伙伴大会,30余家行业领军企业共聚杭州
    9月22日,创邻科技在杭州举办“Graph+X”生态合作伙伴大会,汇聚了超过30家行业头部企业的50多位企业家和技术领袖,共同探讨图技术的前沿应用与发展前景。 ... [详细]
  • 本文详细分析了JSP(JavaServer Pages)技术的主要优点和缺点,帮助开发者更好地理解其适用场景及潜在挑战。JSP作为一种服务器端技术,广泛应用于Web开发中。 ... [详细]
  • 优化ListView性能
    本文深入探讨了如何通过多种技术手段优化ListView的性能,包括视图复用、ViewHolder模式、分批加载数据、图片优化及内存管理等。这些方法能够显著提升应用的响应速度和用户体验。 ... [详细]
  • 本文探讨了Hive中内部表和外部表的区别及其在HDFS上的路径映射,详细解释了两者的创建、加载及删除操作,并提供了查看表详细信息的方法。通过对比这两种表类型,帮助读者理解如何更好地管理和保护数据。 ... [详细]
  • 1:有如下一段程序:packagea.b.c;publicclassTest{privatestaticinti0;publicintgetNext(){return ... [详细]
  • 数据库内核开发入门 | 搭建研发环境的初步指南
    本课程将带你从零开始,逐步掌握数据库内核开发的基础知识和实践技能,重点介绍如何搭建OceanBase的开发环境。 ... [详细]
  • 本文详细介绍了Java编程语言中的核心概念和常见面试问题,包括集合类、数据结构、线程处理、Java虚拟机(JVM)、HTTP协议以及Git操作等方面的内容。通过深入分析每个主题,帮助读者更好地理解Java的关键特性和最佳实践。 ... [详细]
  • 该平台旨在为大型企业提供一个高效、灵活且可扩展的分布式微服务架构解决方案。它采用模块化、微服务化和热部署的设计理念,结合当前最先进且无商业限制的主流开源技术,如Spring Cloud、Spring Boot2、MyBatis、OAuth2和Element UI,实现前后端分离的系统管理平台。 ... [详细]
  • 深入探讨CPU虚拟化与KVM内存管理
    本文详细介绍了现代服务器架构中的CPU虚拟化技术,包括SMP、NUMA和MPP三种多处理器结构,并深入探讨了KVM的内存虚拟化机制。通过对比不同架构的特点和应用场景,帮助读者理解如何选择最适合的架构以优化性能。 ... [详细]
  • 本文探讨了MariaDB在当前数据库市场中的地位和挑战,分析其可能面临的困境,并提出了对未来发展的几点看法。 ... [详细]
  • 毕业设计:基于机器学习与深度学习的垃圾邮件(短信)分类算法实现
    本文详细介绍了如何使用机器学习和深度学习技术对垃圾邮件和短信进行分类。内容涵盖从数据集介绍、预处理、特征提取到模型训练与评估的完整流程,并提供了具体的代码示例和实验结果。 ... [详细]
author-avatar
4396
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有