热门标签 | HotTags
当前位置:  开发笔记 > 后端 > 正文

伯克利2017年机器学习速成课程分享

DanielGeng和ShannonShih在Berkeley的ML博客上分享了一套机器学习速成的课程,课程持续更新,目前更新了四期。第一部分发布于20


Daniel GengShannon ShihBerkeleyML博客分享了一套机器学习速成的课程,课程持续更新,目前更新了四期。第一部分发布于201611月,而最后一个在20177分享,也是最新的

第一部分主要介绍机器学习的基本概念:回归/分类,成本函数和渐变下降2部分介绍感知器,逻辑回归和支持向量机等简单模型。3部分介绍神经网络4部分介绍偏差和差异的概念。分享课程目录如下:

1部分 - 介绍,回归/分类,成本函数和渐变下降

2部分 - 感知器,逻辑回归和支持向量机

3部分 - 神经网络

4部分 - 偏差和差异

 

原网页:

https://steemit.com/programming/@cristi/machine-learning-crash-course-berkeley

获取更多深度学习最新资讯快速通道:

获取最新消息快速通道 - lqfarmer的博客 - CSDN博客

更多深度学习在NLP方面应用的经典论文、实践经验和最新消息,欢迎关注微信公众号“深度学习与NLPDeepLearning_NLP”或扫描二维码添加关注。



推荐阅读
  • 本文探讨了图像标签的多种分类场景及其在以图搜图技术中的应用,涵盖了从基础理论到实际项目实施的全面解析。 ... [详细]
  • 《计算机视觉:算法与应用》第二版初稿上线,全面更新迎接未来
    经典计算机视觉教材《计算机视觉:算法与应用》迎来了其第二版,现已开放初稿下载。本书由Facebook研究科学家Richard Szeliski撰写,自2010年首版以来,一直是该领域的标准参考书。 ... [详细]
  • 回顾与学习是进步的阶梯。再次审视卷积神经网络(CNNs),我对之前不甚明了的概念有了更深的理解。本文旨在分享这些新的见解,并探讨CNNs在图像识别和自然语言处理等领域中的实际应用。 ... [详细]
  • 图像分类算法的优化策略与实践
    本文探讨了《Bag of Tricks for Image Classification with Convolutional Neural Networks》论文中的多项技术,旨在通过具体实例和实验验证,提高卷积神经网络在图像分类任务中的性能。文章详细介绍了从模型训练加速、网络结构调整到训练参数优化等多个方面的改进方法。 ... [详细]
  • 吴恩达推出TensorFlow实践课程,Python基础即可入门,四个月掌握核心技能
    量子位报道,deeplearning.ai最新发布了TensorFlow实践课程,适合希望使用TensorFlow开发AI应用的学习者。该课程涵盖机器学习模型构建、图像识别、自然语言处理及时间序列预测等多个方面。 ... [详细]
  • 京东AI创新之路:周伯文解析京东AI战略的独特之处
    2018年4月15日,京东在北京举办了人工智能创新峰会,会上首次公开了京东AI的整体布局和发展方向。此次峰会不仅展示了京东在AI领域的最新成果,还标志着京东AI团队的首次集体亮相。本文将深入探讨京东AI的发展策略及其与BAT等公司的不同之处。 ... [详细]
  • 如何用GPU服务器运行Python
    如何用GPU服务器运行Python-目录前言一、服务器登录1.1下载安装putty1.2putty远程登录 1.3查看GPU、显卡常用命令1.4Linux常用命令二、 ... [详细]
  • 4000名‘数学基础薄弱’的程序员逆袭成功!揭秘如何学好AI与算法
    对于那些数学基础较差的程序员来说,数学在编程中的重要性往往在工作中才逐渐显现。通过两个实际案例,我们可以深入了解数学如何帮助程序员更好地理解和优化代码。 ... [详细]
  • 本文详细介绍了 TensorFlow 的入门实践,特别是使用 MNIST 数据集进行数字识别的项目。文章首先解析了项目文件结构,并解释了各部分的作用,随后逐步讲解了如何通过 TensorFlow 实现基本的神经网络模型。 ... [详细]
  • ICML2020: 利用贝叶斯元学习在全局关系图上实现小样本关系抽取
    本文介绍了加拿大蒙特利尔大学Mila研究所唐建教授团队在ICML2020上发布的一项研究,该研究探讨了如何利用全局关系图来探索句子间的新关系,并提出了一种创新的贝叶斯元学习方法。 ... [详细]
  • 图神经网络模型综述
    本文综述了图神经网络(Graph Neural Networks, GNN)的发展,从传统的数据存储模型转向图和动态模型,探讨了模型中的显性和隐性结构,并详细介绍了GNN的关键组件及其应用。 ... [详细]
  • 新手指南:在Windows 10上搭建深度学习与PyTorch开发环境
    本文详细记录了一名新手在Windows 10操作系统上搭建深度学习环境的过程,包括安装必要的软件和配置环境变量等步骤,旨在帮助同样初入该领域的读者避免常见的错误。 ... [详细]
  • 2017年人工智能领域的十大里程碑事件回顾
    随着2018年的临近,我们一同回顾过去一年中人工智能领域的重要进展。这一年,无论是政策层面的支持,还是技术上的突破,都显示了人工智能发展的迅猛势头。以下是精选的2017年人工智能领域最具影响力的事件。 ... [详细]
  • 在理解了支付宝分布式事务服务DTS的基本原理后,您可能会好奇,如果在两阶段提交过程中发生故障(如断电或JVM崩溃),事务能否顺利完成?本文将探讨DTS如何确保事务的最终一致性,即使在异常情况下。 ... [详细]
  • 贝叶斯方法的核心理念
    在探索概率深度学习的过程中,理解贝叶斯方法是至关重要的一步。本文旨在深入探讨贝叶斯方法的基本理念及其在深度学习中的应用,通过实例解析贝叶斯公式的内涵。 ... [详细]
author-avatar
手机用户2502906317
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有