热门标签 | HotTags
当前位置:  开发笔记 > Android > 正文

Android使用Sensor感应器获取用户移动方向(指南针原理)

这篇文章主要介绍了Android使用Sensor感应器获取用户移动方向的方法,实例分析了指南针原理极其应用,需要的朋友可以参考下

本文实例讲述了Android使用Sensor感应器获取用户移动方向的方法。分享给大家供大家参考,具体如下:

今天继续给大家分享一下第二个重要的感应器,其实获取方向本应该很简单的事情,在前面文章中看到有个TYPE_ORIENTATION 关键字,说明可以直接获取设备的移动方向,但是最新版的SDK加上了这么一句话“TYPE_ORIENTATION   This constant is deprecated. use SensorManager.getOrientation() instead. ”也就是说,这种方式已经被取消,要开发者使用 SensorManager.getOrientation()来获取原来的数据。

实际上,android获取方向是通过磁场感应器和加速度感应器共同获得的,至于具体的算法SDK已经封装好了。也就是说现在获取用户方向有两种方式,一是官方推荐的,通过SensorManager.getOrientation()来获取,这个方法表面看似容易(那是因为你还没看到他的参数。。一会再说),但实际上需要用到两个感应器共同完成工作,特点是更加的准确。第二种方法非常简单,就像前一篇文章获取加速度一样,直接得到三个轴上的数据。

额,从难一些的介绍吧,因为毕竟第一种方法会是android未来的一个选择,第二种不知道什么时候就要成为历史了。

android给我们提供的方向数据是一个float型的数组,包含三个方向的值 如图

当你的手机水平放置时,被默认为静置状态,即XY角度均为0

values[0] 表示Z轴的角度:方向角,我们平时判断的东西南北就是看这个数据的,经过我的实验,发现了一个有意思的事情,也就是说使用第一种方式获得方向(磁场+加速度)得到的数据范围是(-180~180),也就是说,0表示正北,90表示正东,180/-180表示正南,-90表示正西。而第二种方式(直接通过方向感应器)数据范围是(0~360)360/0表示正北,90表示正东,180表示正南,270表示正西。

values[1] 表示X轴的角度:俯仰角  即由静止状态开始,前后翻转
values[2] 表示Y轴的角度:翻转角 即由静止状态开始,左右翻转

可见统一获取方向的方法是必须的,因为处理这些数据的算法可能针对第一种获取方式,那么当用在第二种方式时,移植性就不好了。

看下面的方法

public static float[] getOrientation (float[] R, float[] values)
Since: API Level 3
Computes the device's orientation based on the rotation matrix.
When it returns, the array values is filled with the result:
values[0]: azimuth, rotation around the Z axis.
values[1]: pitch, rotation around the X axis.
values[2]: roll, rotation around the Y axis.
The reference coordinate-system used is different from the world coordinate-system defined for the rotation matrix:
X is defined as the vector product Y.Z (It is tangential to the ground at the device's current location and roughly points West).
Y is tangential to the ground at the device's current location and points towards the magnetic North Pole.
Z points towards the center of the Earth and is perpendicular to the ground.
All three angles above are in radians and positive in the counter-clockwise direction.

通常我们并不需要获取这个函数的返回值,这个方法会根据参数R[]的数据填充values[]而后者就是我们想要的。

那么R表示什么呢?又将怎么获取呢?

R[] 是一个旋转矩阵,用来保存磁场和加速度的数据,大家可以理解未加工的方向数据吧
R通过下面的静态方法获取,这个方法也是用来填充R[]
public static boolean getRotationMatrix (float[] R, float[] I, float[] gravity, float[] geomagnetic)

解释以下参数:

第一个就是我们需要填充的R数组,大小是9
第二个是是一个转换矩阵,将磁场数据转换进实际的重力坐标中 一般默认情况下可以设置为null
第三个是一个大小为3的数组,表示从加速度感应器获取来的数据 在onSensorChanged中
第四个是一个大小为3的数组,表示从磁场感应器获取来的数据  在onSensorChanged中

好了基本逻辑就是这样的,下面给大家演示一个简单的测试方向的例子,可以时刻监听用户的方向

/* 
 * @author octobershiner 
 * 2011 07 28 
 * SE.HIT 
 * 一个演示通过磁场和加速度两个感应器获取方向数据的例子 
 * */ 
package uni.sensor; 
import android.app.Activity; 
import android.content.Context; 
import android.hardware.Sensor; 
import android.hardware.SensorEvent; 
import android.hardware.SensorEventListener; 
import android.hardware.SensorManager; 
import android.os.Bundle; 
import android.util.Log; 
public class OrientationActivity extends Activity{ 
 private SensorManager sm; 
 //需要两个Sensor 
 private Sensor aSensor; 
 private Sensor mSensor; 
 float[] accelerometerValues = new float[3]; 
 float[] magneticFieldValues = new float[3]; 
 private static final String TAG = "sensor"; 
 @Override 
 public void onCreate(Bundle savedInstanceState) { 
  // TODO Auto-generated method stub 
  super.onCreate(savedInstanceState); 
  setContentView(R.layout.main); 
  sm = (SensorManager)getSystemService(Context.SENSOR_SERVICE); 
  aSensor = sm.getDefaultSensor(Sensor.TYPE_ACCELEROMETER); 
  mSensor = sm.getDefaultSensor(Sensor.TYPE_MAGNETIC_FIELD); 
  sm.registerListener(myListener, aSensor, SensorManager.SENSOR_DELAY_NORMAL); 
  sm.registerListener(myListener, mSensor,SensorManager.SENSOR_DELAY_NORMAL); 
  //更新显示数据的方法 
  calculateOrientation(); 
 } 
 //再次强调:注意activity暂停的时候释放 
 public void onPause(){ 
  sm.unregisterListener(myListener); 
  super.onPause(); 
 }  
 final SensorEventListener myListener = new SensorEventListener() { 
 public void onSensorChanged(SensorEvent sensorEvent) { 
 if (sensorEvent.sensor.getType() == Sensor.TYPE_MAGNETIC_FIELD) 
 magneticFieldValues = sensorEvent.values; 
 if (sensorEvent.sensor.getType() == Sensor.TYPE_ACCELEROMETER) 
  accelerometerValues = sensorEvent.values; 
 calculateOrientation(); 
 } 
 public void onAccuracyChanged(Sensor sensor, int accuracy) {} 
 }; 
 private void calculateOrientation() { 
   float[] values = new float[3]; 
   float[] R = new float[9]; 
   SensorManager.getRotationMatrix(R, null, accelerometerValues, magneticFieldValues);   
   SensorManager.getOrientation(R, values); 
   // 要经过一次数据格式的转换,转换为度 
   values[0] = (float) Math.toDegrees(values[0]); 
   Log.i(TAG, values[0]+""); 
   //values[1] = (float) Math.toDegrees(values[1]); 
   //values[2] = (float) Math.toDegrees(values[2]); 
   if(values[0] >= -5 && values[0] <5){ 
    Log.i(TAG, "正北"); 
   } 
   else if(values[0] >= 5 && values[0] <85){ 
    Log.i(TAG, "东北"); 
   } 
   else if(values[0] >= 85 && values[0] <=95){ 
    Log.i(TAG, "正东"); 
   } 
   else if(values[0] >= 95 && values[0] <175){ 
    Log.i(TAG, "东南"); 
   } 
   else if((values[0] >= 175 && values[0] <= 180) || (values[0]) >= -180 && values[0] <-175){ 
    Log.i(TAG, "正南"); 
   } 
   else if(values[0] >= -175 && values[0] <-95){ 
    Log.i(TAG, "西南"); 
   } 
   else if(values[0] >= -95 && values[0] <-85){ 
    Log.i(TAG, "正西"); 
   } 
   else if(values[0] >= -85 && values[0] <-5){ 
    Log.i(TAG, "西北"); 
   } 
  }
}

实训的时间非常紧张,抽时间写总结感觉很累,但是感觉收获很多,如果有时间的话,也想给大家分享第二种方法,和这种比起来简单很多,其实大家可以完全参考上篇文章中的代码《Android基于Sensor感应器获取重力感应加速度的方法》

只要把其中的两个Sensor。TYPE_ACCELEROMETER改成 Sensor.TYPE_ORIENTATIO就好了,但是今天分享的方法大家最好掌握,这应该是未来android的标准。

Sensor感应器应该就先暂时介绍到这里吧,该看一下进程线程的东西了,其实hardware包中还有个非常重要的类,Camera摄像头,相信大家也听过android扫描器,很强大。以后有时间和大家分享吧。

接下来的安排 应该是 线程 activity然后是geocode

话说我也没有个指导老师,一个人对着SDK研究这些,有些累阿~求高人指点。

希望本文所述对大家Android程序设计有所帮助。


推荐阅读
  • 深入理解OAuth认证机制
    本文介绍了OAuth认证协议的核心概念及其工作原理。OAuth是一种开放标准,旨在为第三方应用提供安全的用户资源访问授权,同时确保用户的账户信息(如用户名和密码)不会暴露给第三方。 ... [详细]
  • 深入解析Android自定义View面试题
    本文探讨了Android Launcher开发中自定义View的重要性,并通过一道经典的面试题,帮助开发者更好地理解自定义View的实现细节。文章不仅涵盖了基础知识,还提供了实际操作建议。 ... [详细]
  • 优化ListView性能
    本文深入探讨了如何通过多种技术手段优化ListView的性能,包括视图复用、ViewHolder模式、分批加载数据、图片优化及内存管理等。这些方法能够显著提升应用的响应速度和用户体验。 ... [详细]
  • Vue 2 中解决页面刷新和按钮跳转导致导航栏样式失效的问题
    本文介绍了如何通过配置路由的 meta 字段,确保 Vue 2 项目中的导航栏在页面刷新或内部按钮跳转时,始终保持正确的 active 样式。具体实现方法包括设置路由的 meta 属性,并在 HTML 模板中动态绑定类名。 ... [详细]
  • 非公版RTX 3080显卡的革新与亮点
    本文深入探讨了图形显卡的进化历程,重点介绍了非公版RTX 3080显卡的技术特点和创新设计。 ... [详细]
  • Søren Kierkegaard famously stated that life can only be understood in retrospect but must be lived moving forward. This perspective delves into the intricate relationship between our lived experiences and our reflections on them. ... [详细]
  • 计算机网络复习:第五章 网络层控制平面
    本文探讨了网络层的控制平面,包括转发和路由选择的基本原理。转发在数据平面上实现,通过配置路由器中的转发表完成;而路由选择则在控制平面上进行,涉及路由器中路由表的配置与更新。此外,文章还介绍了ICMP协议、两种控制平面的实现方法、路由选择算法及其分类等内容。 ... [详细]
  • 本文将介绍如何使用 Go 语言编写和运行一个简单的“Hello, World!”程序。内容涵盖开发环境配置、代码结构解析及执行步骤。 ... [详细]
  • 线性Kalman滤波器在多自由度车辆悬架主动控制中的应用研究
    本文探讨了线性Kalman滤波器(LKF)在不同自由度(2、4、7)的车辆悬架系统中进行主动控制的应用。通过详细的仿真分析,展示了LKF在提升悬架性能方面的潜力,并总结了调参过程中的关键要点。 ... [详细]
  • 本文探讨了Hive中内部表和外部表的区别及其在HDFS上的路径映射,详细解释了两者的创建、加载及删除操作,并提供了查看表详细信息的方法。通过对比这两种表类型,帮助读者理解如何更好地管理和保护数据。 ... [详细]
  • 1:有如下一段程序:packagea.b.c;publicclassTest{privatestaticinti0;publicintgetNext(){return ... [详细]
  • C++实现经典排序算法
    本文详细介绍了七种经典的排序算法及其性能分析。每种算法的平均、最坏和最好情况的时间复杂度、辅助空间需求以及稳定性都被列出,帮助读者全面了解这些排序方法的特点。 ... [详细]
  • 本文介绍如何利用动态规划算法解决经典的0-1背包问题。通过具体实例和代码实现,详细解释了在给定容量的背包中选择若干物品以最大化总价值的过程。 ... [详细]
  • 本文详细探讨了Java中的24种设计模式及其应用,并介绍了七大面向对象设计原则。通过创建型、结构型和行为型模式的分类,帮助开发者更好地理解和应用这些模式,提升代码质量和可维护性。 ... [详细]
  • 本文介绍了Java并发库中的阻塞队列(BlockingQueue)及其典型应用场景。通过具体实例,展示了如何利用LinkedBlockingQueue实现线程间高效、安全的数据传递,并结合线程池和原子类优化性能。 ... [详细]
author-avatar
王者灬旋律
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有