热门标签 | HotTags
当前位置:  开发笔记 > 编程语言 > 正文

二叉树路径和的深度解析与算法优化

本文深入探讨了二叉树路径和问题的算法优化方法。具体而言,给定一棵二叉树,需要找出所有从根节点到叶节点的路径,其中各节点值的总和等于指定的目标值。通过详细分析和优化,提出了一种高效的解决方案,并通过多个样例验证了其有效性和性能。

376. 二叉树的路径和

中文English

给定一个二叉树,找出所有路径中各节点相加总和等于给定 目标值 的路径。

一个有效的路径,指的是从根节点到叶节点的路径。

样例

样例1:

输入:
{1,2,4,2,3}
5
输出: [[1, 2, 2],[1, 4]]
说明:
这棵树如下图所示:
	     1
	    / \
	   2   4
	  / \
	 2   3
对于目标总和为5,很显然1 + 2 + 2 = 1 + 4 = 5

样例2:

输入:
{1,2,4,2,3}
3
输出: []
说明:
这棵树如下图所示:
	     1
	    / \
	   2   4
	  / \
	 2   3
注意到题目要求我们寻找从根节点到叶子节点的路径。
1 + 2 + 2 = 5, 1 + 2 + 3 = 6, 1 + 4 = 5 
这里没有合法的路径满足和等于3.
 
 
输入测试数据 (每行一个参数)如何理解测试数据?

 DFS写法

"""
Definition of TreeNode:
class TreeNode:
    def __init__(self, val):
        self.val = val
        self.left, self.right = None, None
"""


class Solution:
    """
    @param: root: the root of binary tree
    @param: target: An integer
    @return: all valid paths
    """
    def binaryTreePathSum(self, root, target):
        # write your code here
        
        results = []
        self.dfs(root, results, [], 0, target)
        
        return results 
    
    def dfs(self, root, results, path, sums, target):
        if not root: return
        
        path.append(root.val)
        sums += root.val
        
        #如果要加return的话,需要pop掉一个值,否则path的值除了第一个,后面都是大于target的
        if not root.left and not root.right and sums == target:
            results.append(path[:])
            path.pop()
            return 
            
        self.dfs(root.left, results, path, sums, target)
        self.dfs(root.right, results, path, sums, target)
        #回溯,往回删除,找根节点
        path.pop()
        
        

 


推荐阅读
  • 1:有如下一段程序:packagea.b.c;publicclassTest{privatestaticinti0;publicintgetNext(){return ... [详细]
  • 优化ListView性能
    本文深入探讨了如何通过多种技术手段优化ListView的性能,包括视图复用、ViewHolder模式、分批加载数据、图片优化及内存管理等。这些方法能够显著提升应用的响应速度和用户体验。 ... [详细]
  • 本文探讨了如何在给定整数N的情况下,找到两个不同的整数a和b,使得它们的和最大,并且满足特定的数学条件。 ... [详细]
  • 机器学习中的相似度度量与模型优化
    本文探讨了机器学习中常见的相似度度量方法,包括余弦相似度、欧氏距离和马氏距离,并详细介绍了如何通过选择合适的模型复杂度和正则化来提高模型的泛化能力。此外,文章还涵盖了模型评估的各种方法和指标,以及不同分类器的工作原理和应用场景。 ... [详细]
  • 2023年京东Android面试真题解析与经验分享
    本文由一位拥有6年Android开发经验的工程师撰写,详细解析了京东面试中常见的技术问题。涵盖引用传递、Handler机制、ListView优化、多线程控制及ANR处理等核心知识点。 ... [详细]
  • 深入理解OAuth认证机制
    本文介绍了OAuth认证协议的核心概念及其工作原理。OAuth是一种开放标准,旨在为第三方应用提供安全的用户资源访问授权,同时确保用户的账户信息(如用户名和密码)不会暴露给第三方。 ... [详细]
  • Python 异步编程:深入理解 asyncio 库(上)
    本文介绍了 Python 3.4 版本引入的标准库 asyncio,该库为异步 IO 提供了强大的支持。我们将探讨为什么需要 asyncio,以及它如何简化并发编程的复杂性,并详细介绍其核心概念和使用方法。 ... [详细]
  • 本文详细探讨了KMP算法中next数组的构建及其应用,重点分析了未改良和改良后的next数组在字符串匹配中的作用。通过具体实例和代码实现,帮助读者更好地理解KMP算法的核心原理。 ... [详细]
  • 深入解析Android自定义View面试题
    本文探讨了Android Launcher开发中自定义View的重要性,并通过一道经典的面试题,帮助开发者更好地理解自定义View的实现细节。文章不仅涵盖了基础知识,还提供了实际操作建议。 ... [详细]
  • 本文将介绍如何编写一些有趣的VBScript脚本,这些脚本可以在朋友之间进行无害的恶作剧。通过简单的代码示例,帮助您了解VBScript的基本语法和功能。 ... [详细]
  • 本文详细介绍了如何在Linux系统上安装和配置Smokeping,以实现对网络链路质量的实时监控。通过详细的步骤和必要的依赖包安装,确保用户能够顺利完成部署并优化其网络性能监控。 ... [详细]
  • C++实现经典排序算法
    本文详细介绍了七种经典的排序算法及其性能分析。每种算法的平均、最坏和最好情况的时间复杂度、辅助空间需求以及稳定性都被列出,帮助读者全面了解这些排序方法的特点。 ... [详细]
  • 本文介绍了Java并发库中的阻塞队列(BlockingQueue)及其典型应用场景。通过具体实例,展示了如何利用LinkedBlockingQueue实现线程间高效、安全的数据传递,并结合线程池和原子类优化性能。 ... [详细]
  • 题目描述:给定n个半开区间[a, b),要求使用两个互不重叠的记录器,求最多可以记录多少个区间。解决方案采用贪心算法,通过排序和遍历实现最优解。 ... [详细]
  • 本文详细介绍了Java编程语言中的核心概念和常见面试问题,包括集合类、数据结构、线程处理、Java虚拟机(JVM)、HTTP协议以及Git操作等方面的内容。通过深入分析每个主题,帮助读者更好地理解Java的关键特性和最佳实践。 ... [详细]
author-avatar
一起回到我们的那个夏天
这个家伙很懒,什么也没留下!
PHP1.CN | 中国最专业的PHP中文社区 | DevBox开发工具箱 | json解析格式化 |PHP资讯 | PHP教程 | 数据库技术 | 服务器技术 | 前端开发技术 | PHP框架 | 开发工具 | 在线工具
Copyright © 1998 - 2020 PHP1.CN. All Rights Reserved | 京公网安备 11010802041100号 | 京ICP备19059560号-4 | PHP1.CN 第一PHP社区 版权所有